

QUALITY ASSURANCE

TECHNICAL DATA SHEET OXYHYDROGEN GENERATOR (HHO) FOR HEATERS AND BOILERS V.3.2

AUTOMATED ELECTROMECHANICAL SYSTEM FOR OXYHYDROGEN PRODUCTION FOR THERMAL STORAGE SYSTEM

TECHNOLOGICAL RECORDS & PROCEDURES

BGMAC35: A36-33P -HHO-ESP-2024-V5

Version: 02

Date of issue:

3/12/2024

MATERIALS

Outer casing: Made of cast iron and stainless steel, which provides strength and durability to the equipment.

Gas burner: Heat and corrosion resistant bronze.

HHO gas coupling systems: Austenitic steel, natural rubber gaskets, stainless steel safety screws and nuts.

DESCRIPTION

The Electrolyzer W BGMAC35: A36-33P, is an intelligent system designed to control and stabilize its own electrochemical reactor adapted to boilers and heaters. This device operates through the principle of electrolysis to decompose the liquid water molecule into hydrogen and oxygen (HHO) in a gaseous state. The system allows to control the ignition and shutdown automatically, adapted to the user's thermal storage system. It is composed of the following materials: Bronze alloy, 69mm diameter burnt structure, 37mm high. FLARE type connection, an internal volumetric capacity of 6.4cm^3. Manual ignition system with electronic control.

CHARACTERISTICS

✓ Included in the power cable set ✓ Designed with an intelligent system SMART REGULUS CONTROL UNIT (SRCU): that controls and stabilizes its own electrochemical reactor. ✓ Made of Austenitic Steel, resistant rubber gaskets, high-density PVC sheets, stainless steel screws and safety nuts. ✓ Compatible with a variety of input voltages, including 12VDC, 110VAC and 220VAC, allowing it to be adapted to different electrical systems. ✓ Fuel Type: Alkaline Aqueous Solution. ✓ Incorporates an HHO sensor to monitor the gas concentration and ensure optimal operation. ✓ Stainless steel safety screws and nuts. ✓ Equipped with control and monitoring systems to ensure safe and stable operation. ✓ Incorporates a flashback prevention system (Flashback Arrestor System) to avoid possible flashbacks. ✓ Includes an additional safety system with a leak sensor to prevent possible gas leaks.

CONTROL AND MANAGEMENT MEASURES

Preventions: Read the entire manual for safe and correct use of the W electrolyzer for the production of OxyHydrogen, including the handling of flammable gases and the necessary safety measures. In Inspection of Connections: Before each use, verify that all connections are properly tightened and do not present gas leaks.

Regular Maintenance: Only the manufacturer can perform regular maintenance to ensure optimal operation and extend the life of the device. Opening the equipment by unauthorized personnel is prohibited.

SPECIFICATION ELECTROL	YSER BGMAC	35- A36-33P	
Electricity consumption	44,11 KW/Hr Máx. 30,47 KW/Hr Mín.		
Entrance	12 VDC - 110VA - 220VAC		
Nominal pressure	70 a 830 mBa	r	
PRODUCTION AND	TECHN I CAL D	ATA	
	59372,	7 Lt of HHO	
HHO production capacity:	890 LPM Min	989,55 LPM Max.	
	1.012,4	MBH	
Water consumption:	21,7 LPM		
Type of operation:	Continuous		
Intermittent duty cycle	Configurable v	vithout user	
Weight of The Reactor:	30 kg = 66 Lb		
System pressure:	8 psi min.	12 psi max.	
Service time / Lifespan:	100,000 hours	of use	
Reactor temperature:	25°C min.	55°C max.	
Burner temperature:	1000°F min.	1832°F max.	
Relative humidity:	37% min.	47% max.	

COMPONENTES GENERALES

External structure:	Estructura resistente de acero inoxidable
Reactor:	Internal HHO Generating System
Power cable	Conexión: NEMA 3 PINS
Cable Reference:	18AWG 10 A 250V
Approximate weight:	30 kg = 66 lb Per Cell
Security System	Flashback Arrestor System
Leak sensor	HHO SENSOR
Max. Temperature Op.	80°C = 176°F = 353.15°K
Catalyst	KOH at 90% - Caustic Potash

AC RATIN	G/CELL:	DC RATING,	/CELL:
Min Voltage (V):	122 V	Min Voltage (V):	12 V
Max Voltage (V):	125 V	Max Voltage (V):	13,7 V
Max Current (A):	7 A	Max Current (A):	75
Min Freq. (Hz):	55 Hz	Number of Feeds:	4
Max Freg. (Hz):	63 Hz		

OPERATIONAL BENEFITS

✓ Energy savings: with an electric stove, it would consume 668.48 kWh, with 12 hours of use, at an average cost of US \$175.939, while the equipment consumes 44.11kWh, with the same hours would cost US\$11,592.8 per year, recovering the investment in a matter of months. ✓ Clean energy source for equipment and machinery, reducing operating costs and emissions of polluting gases. ✓ Clean and sustainable alternative for industrial uses, heating and cooking systems.

MODE OF OPERATION

The 1/2" water hose should be connected to the back of the electrolyzer, add the caustic potash (90% KOH) to the tank by opening the top cover, then connect the cable (18 AWG 10A) to the side connector (3 pin NEMA). Then, turn on the system with the RED switch, wait for the lights to turn blue, turn on the button next to the display of the equipment and oxyhydrogen production will start. Make sure the 1/4" hose is connected to the HHO outlet next to the control display. Start or stop HHO production with the same button next to the display, lights turn green when producing, and blink when charging the system, and to turn off the unit just press the RED button.

Nat Gas Boile	r	
Boiler Size Output (MBH)		1940
Efficiency		0,9
Boiler Input		2155,6
Nat Gas (MBH)		0,98
		2200
therms		22
Year12 hr day		2190
		48.170
Therm Cost	\$	1,25
Cost/ year	\$	60.213

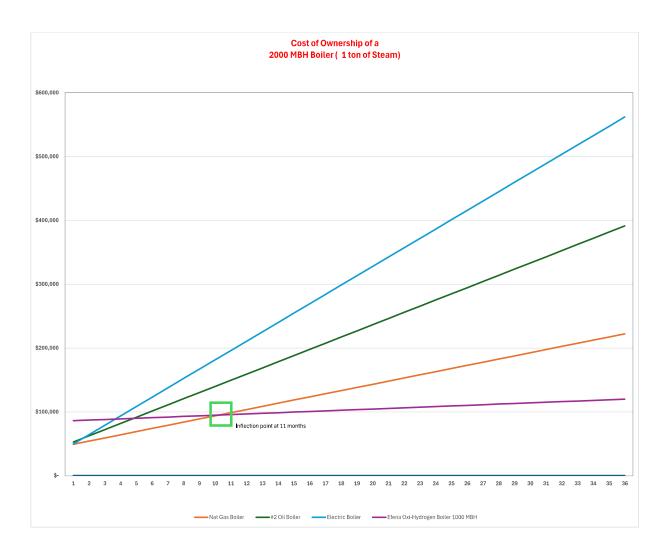
Boiler Cost	\$ 44.219
1 year Cost	\$ 104.432
5 year Cost	\$ 345.282
10 year Cost	\$ 646.345

#2 Oil Boiler		
Boiler Size Output (1940
Efficiency		0,85
		2282,4
#2 Oil		1,396
CF / hr		1635
therms / hr		16
Year12 hr day		2190
therms/ year		35.805
#2 Oil Cost	\$	3,24
Cost/ year	\$	116.079

oiler Cost \$	43.000
year Cost \$	159.079
year Cost \$	623.396
year Cost \$ 1.	203.792
· · ·	

Electric Boiler		
Boiler Size Output	1940	
Efficiency	0,85	
MBH	2282,4	
KW	669,48	
KW/ hr		
Year12 hr day	2190	
KW/ year	1.466.161	
KW required		
\$/ KW	\$ 0,12	
Cost/ year	\$ 175.939	

Boiler Cost	\$35.000
1 year Cost	\$ 210.939
5 year Cost	\$ 914.697
10 year Cost	\$ 1.794.393


EFENA Oxi-Hydrogen 1000 MBH		
Boiler Size Output (MBH)		1053
Efficiency		0,95
MBH		1000
MBH/HR/ cell unit		28,92
# Cell Units		35
KW/ hr		44,11
Year12 hr day		2190
KW/ year		96.607
KW required (US\$/KWh)	\$	5,29
\$/ KW	\$	0,12
Cost/ year	\$	11.592,8

Boiler Cost	\$ 85.000
1 year Cost	\$ 96.593
5 year Cost	\$ 142.964
10 year Cost	\$ 200.928
-	

EFENA Oxi-Hydrogen 750 MBH		
Boiler Size Output (MBH)	1053	
Efficiency	0,95	
MBH	750	
MBH/HR/ cell unit	28,92	
# Cell Units	26	
KW/ hr	33,7	
Year12 hr day	2190	
KW/ year	73.876	
KW required		
\$/ KW	\$ 0,12	
Cost/ year	\$ 8.865,1	

	Boiler Cost	\$ 63.143
	1 year Cost	\$ 72.008
	5 year Cost	\$ 107.468
	10 year Cost	\$ 151.794

						Е	fena Oxi-
						Hydrogen	
Time In		Nat Gas	 			Boiler 1000	
Months	_	Boiler	Oil Boiler		ctric Boiler		MBH
1	\$	49.163	\$ 52.673	\$	49.640	\$	85.966
2	\$	54.107	\$ 62.347	\$	64.279	\$	86.932
3	\$	59.050	\$ 72.020	\$	78.919	\$	87.898
4	\$	63.994	\$ 81.693	\$	93.559	\$	88.864
5	\$	68.938	\$ 91.366	\$	108.199	\$	89.830
6	\$	73.882	\$ 101.040	\$	122.838	\$	90.796
7	\$	78.825	\$ 110.713	\$	137.478	\$	91.762
8	\$	83.769	\$ 120.386	\$	152.118	\$	92.729
9	\$	88.713	\$ 130.059	\$	166.757	\$	93.695
10	\$	93.657	\$ 139.733	\$	181.397	\$	94.661
11	\$	98.600	\$ 149.406	\$	196.037	\$	95.627
12	\$	103.544	\$ 159.079	\$	210.677	\$	96.593
13	\$	108.488	\$ 168.752	\$	225.316	\$	97.559
14	\$	113.432	\$ 178.426	\$	239.956	\$	98.525
15	\$	118.376	\$ 188.099	\$	254.596	\$	99.491
16	\$	123.319	\$ 197.772	\$	269.235	\$	100.457
17	\$	128.263	\$ 207.446	\$	283.875	\$	101.423
18	\$	133.207	\$ 217.119	\$	298.515	\$	102.389
19	\$	138.151	\$ 226.792	\$	313.155	\$	103.355
20	\$	143.094	\$ 236.465	\$	327.794	\$	104.321
21	\$	148.038	\$ 246.139	\$	342.434	\$	105.287
22	\$	152.982	\$ 255.812	\$	357.074	\$	106.253
23	\$	157.926	\$ 265.485	\$	371.713	\$	107.220
24	\$	162.869	\$ 275.158	\$	386.353	\$	108.186
25	\$	167.813	\$ 284.832	\$	400.993	\$	109.152
26	\$	172.757	\$ 294.505	\$	415.633	\$	110.118
27	\$	177.701	\$ 304.178	\$	430.272	\$	111.084
28	\$	182.645	\$ 313.852	\$	444.912	\$	112.050
29	\$	187.588	\$ 323.525	\$	459.552	\$	113.016
30	\$	192.532	\$ 333.198	\$	474.191	\$	113.982
31	\$	197.476	\$ 342.871	\$	488.831	\$	114.948
32	\$	202.420	\$ 352.545	\$	503.471	\$	115.914
33	\$	207.363	\$ 362.218	\$	518.110	\$	116.880
34	\$	212.307	\$ 371.891	\$	532.750	\$	117.846
35	\$	217.251	\$ 381.564	\$	547.390	\$	118.812
36	\$	222.195	\$ 391.238	\$	562.030	\$	119.778

QUALITY ASSURANCE

TECHNICAL DATA SHEET OXYHYDROGEN **GENERATOR (HHO) FOR HEATERS AND BOILERS V.3.2**

AUTOMATED ELECTROMECHANICAL SYSTEM FOR OXYHYDROGEN PRODUCTION FOR

TECHNOLOGICAL RECORDS & PROCEDURES

THERMAL STORAGE SYSTEM

BGMAC26: A36-33P -HHO-ESP-2024-V5

Version: 02

Date of issue:

3/12/2024

MATERIALS

Outer casing: Made of cast iron and stainless steel, which provides strength and durability to the equipment. Gas burner: Heat and corrosion resistant bronze. HHO gas coupling systems: Austenitic steel, natural rubber gaskets, stainless steel safety screws and nuts.

DESCRIPTION

The Electrolyzer W BGMAC26: A36-33P, is an intelligent system designed to control and stabilize its own electrochemical reactor adapted to boilers and heaters. This device operates through the principle of electrolysis to decompose the liquid water molecule into hydrogen and oxygen (HHO) in a gaseous state. The system allows to control the ignition and shutdown automatically, adapted to the user's thermal storage system. It is composed of the following materials: Bronze alloy, 69mm diameter burnt structure, 37mm high. FLARE type connection, an internal volumetric capacity of 6.4cm³. Manual ignition system with electronic control.

CHARACTERISTICS

✓ Included in the power cable set ✓ Designed with an intelligent system SMART REGULUS CONTROL UNIT (SRCU): that controls and stabilizes its own electrochemical reactor. ✓ Made of Austenitic Steel, resistant rubber gaskets, high-density PVC sheets, stainless steel screws and safety nuts. ✓ Compatible with a variety of input voltages, including 12VDC, 110VAC and 220VAC, allowing it to be adapted to different electrical systems. ✓ Fuel Type: Alkaline Aqueous Solution. ✓ Incorporates an HHO sensor to monitor the gas concentration and ensure optimal operation. ✓ Stainless steel safety screws and nuts. ✓ Equipped with control and monitoring systems to ensure safe and stable operation. ✓ Incorporates a flashback prevention system (Flashback Arrestor System) to avoid possible flashbacks. ✓ Includes an additional safety system with a leak sensor to prevent possible gas leaks.

CONTROL AND MANAGEMENT MEASURES

Preventions: Read the entire manual for safe and correct use of the W electrolyzer for the production of OxyHydrogen, including the handling of flammable gases and the necessary safety measures. In Inspection of Connections: Before each use, verify that all connections are properly tightened and do not present gas leaks.

Regular Maintenance: Only the manufacturer can perform regular maintenance to ensure optimal operation and extend the life of the device. Opening the equipment by unauthorized personnel is prohibited.

SPECIFICATION ELECTROLYSER BGMAC-26- A36-33P					
Electricity consumption	32,77 KW/Hr Máx. 20,47 KW/Hr Mín.				
Entrance	12 VDC - 110VA - 220VAC				
Nominal pressure	70 a 830 mBar				
PRODUCTION AND TECHNICAL DATA					
	44105,5	Lt/Hr of HHO			
HHO production capacity:	630 LPM Min 735,09 LPM Max.				
	752 MBH				
Water consumption:	16,17 Lt/min				
Type of operation:	Continuous				
Intermittent duty cycle	Configurable without user				
Weight of The Reactor:	30 kg = 66 Lb				
System pressure:	8 psi min.	12 psi max.			
Service time / Lifespan:	100,000 hours of use				
Reactor temperature:	25°C min.	55°C max.			
Burner temperature:	1000°F min.	1832°F max.			
Relative humidity:	37% min.	47% max.			

COMPONENTES GENERALES

External structure:	Estructura resistente de acero inoxidable
Reactor:	Internal HHO Generating System
Power cable	Conexión: NEMA 3 PINS
Cable Reference:	18AWG 10 A 250V
Approximate weight:	30 kg = 66 lb Per Cell
Security System	Flashback Arrestor System
Leak sensor	HHO SENSOR
Max. Temperature Op.	80°C = 176°F = 353.15°K
Catalyst:	KOH al 90% - Caustic Potash

AC RATIN	G/CELL:	DC RATING/CELL:	
Min Voltage (V):	122 V	Min Voltage (V):	12 V
Max Voltage (V):	125 V	Max Voltage (V):	13,7 V
Max Current (A):	7 A	Max Current (A):	75
Min Freq. (Hz):	55 Hz	Number of Feeds:	4
Max Freq. (Hz):	63 Hz		

OPERATIONAL BENEFITS

✓ Energy savings: with an electric stove, it would consume 668.48 kWh, with 12 hours of use, at an average cost of US\$175.939, while the equipment consumes 44.11kWh, with the same hours would cost US\$11,592.8 per year, recovering the investment in a matter of months.

Clean energy source for equipment and machinery, reducing operating costs and emissions of polluting gases. ✓ Clean and sustainable alternative for industrial uses, heating and cooking systems.

MODE OF OPERATION

The 1/2" water hose should be connected to the back of the electrolyzer, add the caustic potash (90% KOH) to the tank by opening the top cover, then connect the cable (18 AWG 10A) to the side connector (3 pin NEMA). Then, turn on the system with the RED switch, wait for the lights to turn blue, turn on the button next to the display of the equipment and oxyhydrogen production will start. Make sure the 1/4" hose is connected to the HHO outlet next to the control display. Start or stop HHO production with the same button next to the display, lights turn green when producing, and blink when charging the system, and to turn off the unit just press the RED button.